
ROS-Industrial Conference 2020

Advanced Execution

Management with ROS 2

Dr. Ralph Lange

Bosch Corporate Research



int main(int argc, char* argv[])
{
ros::init(argc, argv, "my_node");
ros::NodeHandle nh;
// Init some stuff

ros::spin();

return 0;
}



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

rospy

TCPROS,

UDPROS

roscpp

TCPROS,

UDPROS

Execution Management in ROS 1

…

roslib

User code

TCP, UDP



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

rospy

TCPROS,

UDPROS

roscpp

TCPROS,

UDPROS

Execution Management in ROS 1

Ingo Lütkebohle: “Determinism in ROS”, https://vimeo.com/236186712

…

roslib

User code

/cmd /odom

processOdomonGoal nextCmd

TF

thread

/goal

Network

thread

Timer

thread

Transform

buffer

TCP, UDP

Callback

queue

Spin thread



int main(int argc, char* argv[])
{
rclcpp::init(argc, argv);
rclcpp::Node::SharedPtr node = ...

rclcpp::spin(node);

return 0;
}





Executor

···
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node);
executor.spin();
···



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Agenda

Objectives behind Executor design

Default scheduling semantics – and its issues

 Static Executor

Callback-group-level Executor

Determinism – and particularly FIFO ordering

 rclc Executor (micro-ROS)



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Executor Design

9

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rclcpp

rcl – ROS Client Support Lib

rclpy

User code



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Executor Design

10

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

processOdom

rclcpp

2) take

onGoal nextCmd

1 0 1

/goal

1) wait

3) execute

Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Executor Design

11

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

rclcpp

/goal

Design objectives

 Avoid additional queue in client library

Utilize DDS QoS mechanisms

 Lifespan, history, priorities, …

!
Decision on processing order is

distributed to middleware and client lib



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Scheduling Semantics

12

/cmd /odom

processOdomonGoal nextCmd

1 0 1

/goal

Executor

timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?

Take message

Execute callback

Clear in wait-set

yes

yes

yes

yes

no

no

no

no

collect_entities()

1 0 1

wait in middlewarepgoal 0 podom

pgoal pcmd podom



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Scheduling Semantics

13

Non-preemptive priority + round-robin

timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?

Take message

Execute callback

Clear in wait-set

yes

yes

yes

yes

no

no

no

no

collect_entities()

1 0 1

wait in middlewarepgoal 0 podom

pgoal pcmd podom



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Scheduling Semantics

14

D. Casini, T. Blass, I. Lütkebohle, and B. Brandenburg: “Response-Time 

Analysis of ROS 2 Processing Chains under Reservation-Based 

Scheduling”, Proc. of 31st ECRTS 2019, Stuttgart, Germany, July 2019.

!
No FIFO processing in

case of congestions!

Non-preemptive priority + round-robin

timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?

Take message

Execute callback

Clear in wait-set

yes

yes

yes

yes

no

no

no

no

collect_entities()

1 0 1

wait in middlewarepgoal 0 podom

pgoal pcmd podom



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Discussion

Requirements

 End-to-end latency guarantees

 Support for mixed real-time criticality

 Parallelization

Determinism

On-going works

Runtime overhead by layered design

 Costly wait-set operations

Mapping to OS scheduling mechanisms

 FIFO ordering (by message timestamps)

15



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Multi-Threaded Executor

16

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

processOdom

rclcpp

2a) take

onGoal nextCmd

1 0 1

/goal

1) wait

3a) execute

2b) take

3b) execute

a ba

MultiThreadedExecutor



···

auto secondGroup = create_callback_group(type);

···

where type is rclcpp::CallbackGroupType::MutuallyExclusive
or rclcpp::CallbackGroupType::Reentrant



···

rclcpp::SubscriptionOptionsWithAllocator<..> options;
options.callback_group = secondGroup;

mySub = create_subscription<..>("/odom",
rclcpp::SensorDataQoS(), processOdom, options);

···



···

myTimer = create_wall_timer(100ms, myCallback, secondGroup);

···



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

/odom

Static Single-Threaded Executor

20

/cmd

processOdomonGoal nextCmd

/goal

1 0

StaticSingleThreadedExecutor
timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?

Take message

Execute callback

Clear in wait-set

yes

yes

yes

yes

no

no

no

no

1 0

wait in middlewarepgoal 0

collect_entities()

pgoal pcmd



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

/odom

Static Single-Threaded Executor

21

/cmd

processOdomonGoal nextCmd

/goal

StaticSingleThreadedExecutor executor;

executor.add_node(node);

void nextCmd(Cmd msg)

{

if (msg == "activate_process_odom")

{

processOdomSub_ = create_subscription(...);

}

}

1 0

StaticSingleThreadedExecutor



is NOT another Executor

Callback-group-level Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Callback-group-level Executor

23

processOdomonGoal nextCmd

1 0

a ba

1

/cmd /odom/goal

Thread BThread A

Support mixed real-time criticality in a node

Refines interface of Executor to callback groups

 Prototype presented by me at ROSCon 2018

Recently brought mainline by Pedro Pena

and William Woodall (many thanks!)

 Implemented for all Executors in rclcpp now

 Available in Rolling release

Executor BExecutor A



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The cbg_executor_demo Package

24

Source code at https://github.com/boschresearch/ros2_demos



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The cbg_executor_demo Package

25

Source code at https://github.com/boschresearch/ros2_demos

high_busyloop = 0.01 s

low_busyloop = 0.04 s



… but no solution for determinism

or at least FIFO ordering



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Design Revisited

27

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

processOdom

rclcpp

onGoal nextCmd

/goal

Decision on processing order is

distributed to middleware and client lib!

Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Design Revisited

28

/cmd /odom

processOdomonGoal nextCmd

/goal

Decision on processing order is

distributed to middleware and client lib!

Ideas:

1. Decide completely in middleware

‒ Lack of application knowledge

2. Additional queue in client library

‒ Thwarts middleware QoS 

3. Comprehensive view on middleware

‒ Expensive synchronization

Many subtle technical issues:

 Memory management

 Integration of timers

 Access to DDS metadata

Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Message Info (since Foxy)

29

/cmd /odom

1 0 1

/goal

processOdomonGoal nextCmd

wait take_with_info

Ideas:

1. Decide completely in middleware

‒ Lack of application knowledge

2. Additional queue in client library

‒ Thwarts middleware QoS 

3. Comprehensive view on middleware

‒ Expensive synchronization

Many subtle technical issues:

 Memory management

 Integration of timers

 Access to DDS metadata

Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EventsExecutor (Proof of Concept)

30

/cmd /odom/goal

processOdomonGoal nextCmd

Thread at https://discourse.ros.org/t/ros2-

middleware-change-proposal/

 Improved performance

 FIFO ordering

 Possible to use DDS listeners

 Event queue or work queue?

EventsExecutor



rclc Executor for micro-ROS



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Typical Execution Patterns

32

IMU

Laser

@500Hz

@10Hz

S

@10Hz

+

sense

Control loops

Data fusion

 Prioritized paths



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Key Concepts of rclc Executor

33

 Individual registration of each callback

 Not uncommon in deeply embedded software

User-defined processing sequence

Custom trigger conditions

Optional: LET semantics /cmd /odom

processOdomonGoal nextCmd

/goal

1 0 1

20ms task

trigger only if

goal && cmd

100ms task

Source code at https://github.com/ros2/rclc/

rclc Executorrclc Executor



Ralph Lange (CR/AEE1) | 2020-12-16

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Conclusions on Execution Management in ROS 2

34

 Very different semantics compared to ROS 1

 No FIFO ordering in case of congestions

Decision on processing order is distributed to middleware and client library

 Key questions: Determinism? Integration with middleware QoS?

 On-going discussion – join middleware and real-time working group

 Several new concepts available in Foxy and Rolling



Looking forward

to your questions!

Dr. Ralph Lange

Bosch Corporate Research

ralph.lange@de.bosch.com

github.com/ralph-lange


