ROS-Industrial Conference 2020

Advanced Execution
Management with ROS 2

Dr. Ralph Lange
Bosch Corporate Research




int main(int argc, char* argv[])
{
ros::init(argc, argv,
ros: :NodeHandle nh;
// Init some stuff

ros::spin();

my node");

return 9;




Execution Management in ROS 1

User code

roscpp rospy

TCPROS, TCPROS,
UDPROS UDPROS

TCP, UDP

Ralph Lange (CR/AEE1) | 2020-12-16 @ BOSCH
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.




Execution Management in ROS 1

onGoal ‘ nextCmd‘ processOdom‘

P
\ )

é @ Callback Q Q Q
4

queue

/goalt /cmdt /odomt

Ingo Liitkebohle: “Determinism in ROS”, https://vimeo.com/236186712
Iph Lange (CR/AEE1) | 2020-12-16 BOSCH
—




int main(int argc, char* argv[])

{
rclcpp::init(argc, argv);
rclcpp: :Node: :SharedPtr node = ...
rclcpp::spin(node);

return 9;

¥




;1@r1-vm:~$ ros2 component standalonehaémb-ﬁodes cpp demo nodes cpp::Listener

[INFO] [1607681830.972658378]
/opt/ros/foxy/1ib/1libtopics_library.so
[INFO] [1607681830.974177416]
rclcpp_components:
[INFO] [1607681830.974225889]

lass:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

rclcpp_components:
[1607681884.
[1607681885. ]
[1607681886. ]
.114233723]

]

]

[1607681887

[1607681888.
[1607681889.

120730739]
111974007
122591272

112173517
119666995

[standalone_container _bcOebd7a7a2e]:

[standalone_container bcOe6d7a7a2e]:
:NodeFactoryTemplate<demo nodes cpp::Listener>

[standalone _container bcOebd7a7a2e]:
:NodeFactoryTemplate<demo nodes cpp::Listener>
[Hello World:
[Hello World:
[Hello World:
[Hello World:
[Hello World:
[Hello World:

[listener]:
[listener]:
[listener]:
[listener]:
[listener]:
[Listener]:

I

CEIE
heard:
heard:
heard:
heard:
heard:

Load Library:

Found class:
Instantiate c

1]




Executor

.

rclcpp: :executors::SingleThreadedExecutor executor;

executor.add node(node);
executor.spin();




Agenda

» Objectives behind Executor design
» Default scheduling semantics — and its issues

» Static Executor
» Callback-group-level Executor

» Determinism — and patrticularly FIFO ordering

» rclc Executor (micro-ROS)

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




Executor Design

User code

rcl — ROS Client Support Lib

rmw — middleware interface

rmw adapter

FastDDS, Cyclone, Connext, ...

9 Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH
P e



Executor Design

onGoaI‘ nextCmd‘

processOdom ‘
3) execute /

\

A

[TT1
1) wait

M
/goalt

Iph Lange (CR/AEE1) | 2020-12-1

A

2) take

J

A

v

LA

/cmdt /odomt

BOSCH




Executor Design

Design objectives
» Avoid additional queue in client library
» Utilize DDS QoS mechanisms

» Lifespan, history, priorities, ...

Decision on processing order is
distributed to middleware and client lib

LA

LA
/goalt /cmdt /odomt

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




Scheduling Semantics ?

timer ready?

yes

yes

yes

lno

| |
| pgoal | Pcmd |podom|

pgoal 0 podom Wait in middleware

Ralph Lange (CR/AEE1) | 2020-12-16

yes

BOSCH




Scheduling Semantics ?

A
- ?
timer ready” yes
no
Non-preemptive priority + round-robin
yes
lno
yes
lno
es
lno y
|pgoal | pclmd |podom|
pgoal 0 podom Wait in middleware
Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




Scheduling Semantics ?

' ?
timer ready” yes

Non-preemptive priority + round-robin

yes

yes
A No FIFO processing in lno
case of congestions!

yes
lno

| |
| pgoal | Pcmd |podom|

D. Casini, T. Blass, I. Liitkebohle, and B. Brandenburg: “Response-Time
Analysis of ROS 2 Processing Chains under Reservation-Based >
Scheduling”, Proc. of 31st ECRTS 2019, Stuttgart, Germany, July 2019. goa

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH

0 [Podom wait in middleware




Discussion

Requirements On-going works

» End-to-end latency guarantees » Runtime overhead by layered design

. ) o » Costly wait-set operations
» Support for mixed real-time criticality

» Mapping to OS scheduling mechanisms
» Parallelization

» FIFO ordering (by message timestamps)
» Determinism

Ralph Lange (CR/AEE1) | 2020-12-16

BOSCH




Multi-Threaded Executor

onGoal ‘aj nextCmdgjlj processOdomg)j

3a) execute‘\ 3b) execute/

N h
t t t

[TT1
2a) take 1) wait 2b) take

VARRVASY
M
Ra /goalt

Iph Lange (CR/AEE1) | 2020-12-1

LA

/cmdt /odomt

BOSCH




auto secondGroup = create callback group(type);

where type is rclcpp::CallbackGroupType: :MutuallyExclusive
or rclcpp: :CallbackGroupType: :Reentrant




rclcpp: :SubscriptionOptionsWithAllocator<..> options;
options.callback group = secondGroup;

mySub = create_subscription<..>("/odom",
rclcpp::SensorDataQoS(), processOdom, options);




myTimer = create_wall_timer(100ms, myCallback, secondGroup);




Static Single-Threaded Executor 4

Pgoal | Pcmd
onGoaI‘ nextCmd‘
A
K \ [1]0] timer ready? yes
no
A
yes
1] Jno
yes
@g lno
— yes

Pgoal | 0 wait in middleware

Iph Lange (CR/AEE1) | 2020-12-1 BOSCH




Static Single-Threaded Executor

onGoaI‘ nextCmd‘
N )

@EI
M
/goalt /cmdt

Ralph Lange (CR/AEE1) | 2020-12-16

StaticSingleThreadedExecutor executor;
executor.add _node(node);

void nextCmd(Cmd msg)

{
if (msg == "activate_process_odom")
{
processOdomSub_ = create_subscription(...);
}
}

BOSCH




Callback-group-level Executor

Is NOT another Executor




Callback-group-level Executor

Support mixed real-time criticality in a node

» Refines interface of Executor to callback groups

onG‘.oaIfi\nextCmd‘eIj processOdorr/;g)j

K \ K \ » Prototype presented by me at ROSCon 2018
Thread A Thread B
A A A » Recently brought mainline by Pedro Pena
1] [] and William Woodall (many thanks!)
6E \j » Implemented for all Executors in rclcpp now

» Available in Rolling release

) [0

&
/goalt /cmdt /odom

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




The cbg executor _demo Package

4 Ping Node

Counter msg every @
ping_period secs

Measuring receive

rate and latency

Measuring receive
rate and latency

\

/high_ping

/high_pong 9 g

/low_ping

/low_pong

’_

Ralph Lange (CR/AEE1) | 2020-12-16

Pong Node

Burn CPU cycles for
high_busyloop secs

Burn CPU cycles for
low_busyloop secs

>

>

J

With SCHED FIFO
and core pinning:

Executor with
high prio thread

Executor with
low prio thread

Source code at https://github.com/boschresearch/ros2_demos

BOSCH
o



The cbg executor _demo Package

120

100

00
o

high_busyloop = 0.01s

Pong rate
()]
o

low busyloop = 0.04s

B
o

N
o

0 20 40 60 80 100 120
Ping rate

e PiNg parameter === Actual high pong e==@==Actuallow pong == = == |dealhighpong == = = |deallow pong

Source code at https://github.com/boschresearch/ros2_demos
25 Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH



... but no solution for determinism
or at least FIFO ordering




Design Revisited

onGoal ‘ nextCmd‘ processOdom‘

\ )

.

Decision on processing order is
distributed to middleware and client lib

\ 4

LA

LA
/goalt /cmdt /odomt

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




Design Revisited

Ideas:
onGoal@ nextCmd@ processOdom@ 1. Decide completely in middleware

— Lack of application knowledge
K \ 2. Additional queue in client library

‘ — Thwarts middleware QoS

Decision on processing order is 3. Comprehe.nswe view .on rmddleware
distributed to middleware and client lib ~ Expensive synchronization

' Many subtle technical issues:

QQQ » Memory management

» Integration of timers
/cmdt /odomt » Access to DDS metadata

M
/goalt

Ralph Lange (CR/AEE1) | 2020-12-16

BOSCH




Message Info (since Foxy)

onGoal ‘ nextCmd‘ processOdom‘

\

A

[TT]

t t

g\

LA

LA
/goalt /cmdt /odomt

Ralph Lange (CR/AEE1) | 2020-12-16

>

Ideas:

1. Decide completely in middleware

— Lack of application knowledge

2. Additional queue in client library

— Thwarts middleware QoS

3. Comprehensive view on middleware

— Expensive synchronization

Many subtle technical issues:
» Memory management

» Integration of timers

» Access to DDS metadata

BOSCH




EventsExecutor (Proof of Concept)

onGoal ‘ nextCmd‘ processOdom‘

Thread at https://discourse.ros.org/t/fros2-
K \ middleware-change-proposal/

RRARARA » Improved performance

» FIFO ordering

» Possible to use DDS listeners

» Event queue or work queue?

/goalt /cmdt /odomt

Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




rclc Executor for micro-ROS




Typical Execution Patterns

» Control loops

» Data fusion

» Prioritized paths

Ralph Lange (CR/AEE1) | 2020-12-16

(IMU_}—

sense
r

act

—D

@500H; 21072
IMU sense
@10Hz %_’
Laser :\
@—
Obstacle
—
avoidance
HEL sense l lan
(Laser jJ—~"" 7" J _ P

act

BOSCH




Key Concepts of rclc Executor

» Individual registration of each callback onGoal @ nextCmd@  processOdom @

» Not uncommon in deeply embedded software k\ \ K \

100ms task 20ms task
A A

> User-defined processing sequence 1]
trigger only if

goal && cmd

1]0]
» Custom trigger conditions @ \]

» Optional: LET semantics /goalt /cmdt /odomt

Source code at https://github.com/ros2/rclc/
Ralph Lange (CR/AEE1) | 2020-12-16 BOSCH




Conclusions on Execution Management in ROS 2

» Very different semantics compared to ROS 1

» No FIFO ordering in case of congestions
» Decision on processing order is distributed to middleware and client library
» Key questions: Determinism? Integration with middleware QoS?

» On-going discussion — join middleware and real-time working group

» Several new concepts available in Foxy and Rolling

Ralph Lange (CR/AEE1) | 2020-12-16

BOSCH




Looking forward
to your questions!

Dr. Ralph Lange
Bosch Corporate Research

ralph.lange@de.bosch.com
github.com/ralph-lange

BOSCH



