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int main(int argc, char* argv[])
{
ros::init(argc, argv,
ros: :NodeHandle nh;
// Init some stuff

ros::spin();

my node");

return 9;




Execution Management in ROS 1

User code

roscpp rospy

TCPROS, TCPROS,
UDPROS UDPROS

TCP, UDP
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Execution Management in ROS 1

onGoal ‘ nextCmd‘ processOdom‘

P
\ )

é @ Callback Q Q Q
4

queue

/goalt /cmdt /odomt

Ingo Liitkebohle: “Determinism in ROS”, https://vimeo.com/236186712
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int main(int argc, char* argv[])

{
rclcpp::init(argc, argv);
rclcpp: :Node: :SharedPtr node = ...
rclcpp::spin(node);

return 9;

¥




;1@r1-vm:~$ ros2 component standalonehaémb-ﬁodes cpp demo nodes cpp::Listener

[INFO] [1607681830.972658378]
/opt/ros/foxy/1ib/1libtopics_library.so
[INFO] [1607681830.974177416]
rclcpp_components:
[INFO] [1607681830.974225889]

lass:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

rclcpp_components:
[1607681884.
[1607681885. ]
[1607681886. ]
.114233723]

]

]

[1607681887

[1607681888.
[1607681889.

120730739]
111974007
122591272

112173517
119666995

[standalone_container _bcOebd7a7a2e]:

[standalone_container bcOe6d7a7a2e]:
:NodeFactoryTemplate<demo nodes cpp::Listener>

[standalone _container bcOebd7a7a2e]:
:NodeFactoryTemplate<demo nodes cpp::Listener>
[Hello World:
[Hello World:
[Hello World:
[Hello World:
[Hello World:
[Hello World:

[listener]:
[listener]:
[listener]:
[listener]:
[listener]:
[Listener]:

I

CEIE
heard:
heard:
heard:
heard:
heard:

Load Library:

Found class:
Instantiate c

1]




Executor

.

rclcpp: :executors::SingleThreadedExecutor executor;

executor.add node(node);
executor.spin();




Agenda

» Objectives behind Executor design
» Default scheduling semantics — and its issues

» Static Executor
» Callback-group-level Executor

» Determinism — and patrticularly FIFO ordering

» rclc Executor (micro-ROS)
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Executor Design

User code

rcl — ROS Client Support Lib

rmw — middleware interface

rmw adapter

FastDDS, Cyclone, Connext, ...
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Executor Design
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Executor Design

Design objectives
» Avoid additional queue in client library
» Utilize DDS QoS mechanisms

» Lifespan, history, priorities, ...

Decision on processing order is
distributed to middleware and client lib

LA

LA
/goalt /cmdt /odomt
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Scheduling Semantics ?

timer ready?

yes

yes

yes

lno

| |
| pgoal | Pcmd |podom|

pgoal 0 podom Wait in middleware
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Scheduling Semantics ?

A
- ?
timer ready” yes
no
Non-preemptive priority + round-robin
yes
lno
yes
lno
es
lno y
|pgoal | pclmd |podom|
pgoal 0 podom Wait in middleware
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Scheduling Semantics ?

' ?
timer ready” yes

Non-preemptive priority + round-robin

yes

yes
A No FIFO processing in lno
case of congestions!

yes
lno

| |
| pgoal | Pcmd |podom|

D. Casini, T. Blass, I. Liitkebohle, and B. Brandenburg: “Response-Time
Analysis of ROS 2 Processing Chains under Reservation-Based >
Scheduling”, Proc. of 31st ECRTS 2019, Stuttgart, Germany, July 2019. goa
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Discussion

Requirements On-going works

» End-to-end latency guarantees » Runtime overhead by layered design

. ) o » Costly wait-set operations
» Support for mixed real-time criticality

» Mapping to OS scheduling mechanisms
» Parallelization

» FIFO ordering (by message timestamps)
» Determinism
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Multi-Threaded Executor

onGoal ‘aj nextCmdgjlj processOdomg)j
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auto secondGroup = create callback group(type);

where type is rclcpp::CallbackGroupType: :MutuallyExclusive
or rclcpp: :CallbackGroupType: :Reentrant




rclcpp: :SubscriptionOptionsWithAllocator<..> options;
options.callback group = secondGroup;

mySub = create_subscription<..>("/odom",
rclcpp::SensorDataQoS(), processOdom, options);




myTimer = create_wall_timer(100ms, myCallback, secondGroup);




Static Single-Threaded Executor 4
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onGoaI‘ nextCmd‘
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Static Single-Threaded Executor

onGoaI‘ nextCmd‘
N )

@EI
M
/goalt /cmdt
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StaticSingleThreadedExecutor executor;
executor.add _node(node);

void nextCmd(Cmd msg)

{
if (msg == "activate_process_odom")
{
processOdomSub_ = create_subscription(...);
}
}
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Callback-group-level Executor

Is NOT another Executor




Callback-group-level Executor

Support mixed real-time criticality in a node

» Refines interface of Executor to callback groups

onG‘.oaIfi\nextCmd‘eIj processOdorr/;g)j

K \ K \ » Prototype presented by me at ROSCon 2018
Thread A Thread B
A A A » Recently brought mainline by Pedro Pena
1] [] and William Woodall (many thanks!)
6E \j » Implemented for all Executors in rclcpp now

» Available in Rolling release
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The cbg executor _demo Package

4 Ping Node

Counter msg every @
ping_period secs

Measuring receive

rate and latency

Measuring receive
rate and latency

\

/high_ping

/high_pong 9 g
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/low_pong

’_
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Pong Node

Burn CPU cycles for
high_busyloop secs

Burn CPU cycles for
low_busyloop secs

>

>

J

With SCHED FIFO
and core pinning:

Executor with
high prio thread

Executor with
low prio thread

Source code at https://github.com/boschresearch/ros2_demos
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The cbg executor _demo Package
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Source code at https://github.com/boschresearch/ros2_demos
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... but no solution for determinism
or at least FIFO ordering




Design Revisited

onGoal ‘ nextCmd‘ processOdom‘
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Decision on processing order is
distributed to middleware and client lib
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Design Revisited

Ideas:
onGoal@ nextCmd@ processOdom@ 1. Decide completely in middleware

— Lack of application knowledge
K \ 2. Additional queue in client library

‘ — Thwarts middleware QoS

Decision on processing order is 3. Comprehe.nswe view .on rmddleware
distributed to middleware and client lib ~ Expensive synchronization

' Many subtle technical issues:

QQQ » Memory management

» Integration of timers
/cmdt /odomt » Access to DDS metadata

M
/goalt
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Message Info (since Foxy)

onGoal ‘ nextCmd‘ processOdom‘
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Ideas:

1. Decide completely in middleware

— Lack of application knowledge

2. Additional queue in client library

— Thwarts middleware QoS

3. Comprehensive view on middleware

— Expensive synchronization

Many subtle technical issues:
» Memory management

» Integration of timers

» Access to DDS metadata
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EventsExecutor (Proof of Concept)

onGoal ‘ nextCmd‘ processOdom‘

Thread at https://discourse.ros.org/t/fros2-
K \ middleware-change-proposal/

RRARARA » Improved performance

» FIFO ordering

» Possible to use DDS listeners

» Event queue or work queue?

/goalt /cmdt /odomt
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rclc Executor for micro-ROS




Typical Execution Patterns

» Control loops

» Data fusion

» Prioritized paths
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Key Concepts of rclc Executor

» Individual registration of each callback onGoal @ nextCmd@  processOdom @

» Not uncommon in deeply embedded software k\ \ K \

100ms task 20ms task
A A

> User-defined processing sequence 1]
trigger only if

goal && cmd

1]0]
» Custom trigger conditions @ \]

» Optional: LET semantics /goalt /cmdt /odomt

Source code at https://github.com/ros2/rclc/
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Conclusions on Execution Management in ROS 2

» Very different semantics compared to ROS 1

» No FIFO ordering in case of congestions
» Decision on processing order is distributed to middleware and client library
» Key questions: Determinism? Integration with middleware QoS?

» On-going discussion — join middleware and real-time working group

» Several new concepts available in Foxy and Rolling
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Looking forward
to your questions!

Dr. Ralph Lange
Bosch Corporate Research

ralph.lange@de.bosch.com
github.com/ralph-lange
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