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int main(int argc, char* argv[])
{
ros::init(argc, argv, "my_node");
ros::NodeHandle nh;
// Init some stuff

ros::spin();

return 0;
}
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…

roslib

User code

/cmd /odom

processOdomonGoal nextCmd

TF

thread

/goal

Network

thread

Timer

thread

Transform

buffer

TCP, UDP

Callback

queue

Spin thread



int main(int argc, char* argv[])
{
rclcpp::init(argc, argv);
rclcpp::Node::SharedPtr node = ...

rclcpp::spin(node);

return 0;
}





Executor

···
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node);
executor.spin();
···
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Agenda

Objectives behind Executor design

Default scheduling semantics – and its issues

 Static Executor

Callback-group-level Executor

Determinism – and particularly FIFO ordering

 rclc Executor (micro-ROS)
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Executor Design

9

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rclcpp

rcl – ROS Client Support Lib

rclpy

User code
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Executor Design

10

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code
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2) take

onGoal nextCmd

1 0 1

/goal

1) wait

3) execute

Executor
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Executor Design

11

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

rclcpp

/goal

Design objectives

 Avoid additional queue in client library

Utilize DDS QoS mechanisms

 Lifespan, history, priorities, …

!
Decision on processing order is

distributed to middleware and client lib
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Scheduling Semantics
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/cmd /odom

processOdomonGoal nextCmd

1 0 1

/goal

Executor

timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?

Take message

Execute callback

Clear in wait-set

yes

yes

yes
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collect_entities()

1 0 1

wait in middlewarepgoal 0 podom

pgoal pcmd podom
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Scheduling Semantics
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Non-preemptive priority + round-robin
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Scheduling Semantics

14

D. Casini, T. Blass, I. Lütkebohle, and B. Brandenburg: “Response-Time 

Analysis of ROS 2 Processing Chains under Reservation-Based 

Scheduling”, Proc. of 31st ECRTS 2019, Stuttgart, Germany, July 2019.

!
No FIFO processing in

case of congestions!

Non-preemptive priority + round-robin
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1 0 1

wait in middlewarepgoal 0 podom

pgoal pcmd podom
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Discussion

Requirements

 End-to-end latency guarantees

 Support for mixed real-time criticality

 Parallelization

Determinism

On-going works

Runtime overhead by layered design

 Costly wait-set operations

Mapping to OS scheduling mechanisms

 FIFO ordering (by message timestamps)

15
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Multi-Threaded Executor
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…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

processOdom

rclcpp

2a) take

onGoal nextCmd

1 0 1

/goal

1) wait

3a) execute

2b) take

3b) execute

a ba

MultiThreadedExecutor



···

auto secondGroup = create_callback_group(type);

···

where type is rclcpp::CallbackGroupType::MutuallyExclusive
or rclcpp::CallbackGroupType::Reentrant



···

rclcpp::SubscriptionOptionsWithAllocator<..> options;
options.callback_group = secondGroup;

mySub = create_subscription<..>("/odom",
rclcpp::SensorDataQoS(), processOdom, options);

···



···

myTimer = create_wall_timer(100ms, myCallback, secondGroup);

···
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/odom

Static Single-Threaded Executor
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/cmd

processOdomonGoal nextCmd

/goal

1 0

StaticSingleThreadedExecutor
timer ready?

topic in wait-set?

service in wait-set?

service reply in wait-set?
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Execute callback

Clear in wait-set
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no

1 0

wait in middlewarepgoal 0
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pgoal pcmd
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/odom

Static Single-Threaded Executor
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/cmd

processOdomonGoal nextCmd

/goal

StaticSingleThreadedExecutor executor;

executor.add_node(node);

void nextCmd(Cmd msg)

{

if (msg == "activate_process_odom")

{

processOdomSub_ = create_subscription(...);

}

}

1 0

StaticSingleThreadedExecutor



is NOT another Executor

Callback-group-level Executor
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Callback-group-level Executor
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processOdomonGoal nextCmd

1 0

a ba

1

/cmd /odom/goal

Thread BThread A

Support mixed real-time criticality in a node

Refines interface of Executor to callback groups

 Prototype presented by me at ROSCon 2018

Recently brought mainline by Pedro Pena

and William Woodall (many thanks!)

 Implemented for all Executors in rclcpp now

 Available in Rolling release

Executor BExecutor A
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The cbg_executor_demo Package

24

Source code at https://github.com/boschresearch/ros2_demos
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The cbg_executor_demo Package
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Source code at https://github.com/boschresearch/ros2_demos

high_busyloop = 0.01 s

low_busyloop = 0.04 s



… but no solution for determinism

or at least FIFO ordering
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Design Revisited

27

…

rmw adapter

FastDDS, Cyclone, Connext, …

rmw – middleware interface

rcl – ROS Client Support Lib

rclpy

User code

/cmd /odom

processOdom

rclcpp

onGoal nextCmd

/goal

Decision on processing order is

distributed to middleware and client lib!

Executor
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Design Revisited
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/cmd /odom

processOdomonGoal nextCmd

/goal

Decision on processing order is

distributed to middleware and client lib!

Ideas:

1. Decide completely in middleware

‒ Lack of application knowledge

2. Additional queue in client library

‒ Thwarts middleware QoS 

3. Comprehensive view on middleware

‒ Expensive synchronization

Many subtle technical issues:

 Memory management

 Integration of timers

 Access to DDS metadata

Executor
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Message Info (since Foxy)
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/cmd /odom

1 0 1

/goal

processOdomonGoal nextCmd

wait take_with_info

Ideas:

1. Decide completely in middleware

‒ Lack of application knowledge

2. Additional queue in client library

‒ Thwarts middleware QoS 

3. Comprehensive view on middleware

‒ Expensive synchronization

Many subtle technical issues:

 Memory management

 Integration of timers

 Access to DDS metadata

Executor
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EventsExecutor (Proof of Concept)
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/cmd /odom/goal

processOdomonGoal nextCmd

Thread at https://discourse.ros.org/t/ros2-

middleware-change-proposal/

 Improved performance

 FIFO ordering

 Possible to use DDS listeners

 Event queue or work queue?

EventsExecutor



rclc Executor for micro-ROS
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Typical Execution Patterns
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IMU

Laser

@500Hz

@10Hz

S

@10Hz

+

sense

Control loops

Data fusion

 Prioritized paths
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Key Concepts of rclc Executor

33

 Individual registration of each callback

 Not uncommon in deeply embedded software

User-defined processing sequence

Custom trigger conditions

Optional: LET semantics /cmd /odom

processOdomonGoal nextCmd

/goal

1 0 1

20ms task

trigger only if

goal && cmd

100ms task

Source code at https://github.com/ros2/rclc/

rclc Executorrclc Executor
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Conclusions on Execution Management in ROS 2
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 Very different semantics compared to ROS 1

 No FIFO ordering in case of congestions

Decision on processing order is distributed to middleware and client library

 Key questions: Determinism? Integration with middleware QoS?

 On-going discussion – join middleware and real-time working group

 Several new concepts available in Foxy and Rolling



Looking forward

to your questions!

Dr. Ralph Lange

Bosch Corporate Research

ralph.lange@de.bosch.com

github.com/ralph-lange


