
vTSL – A Formally Verifiable DSL for Specifying Robot Tasks

Christian Heinzemann, Ralph Lange
Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, 71272 Renningen, Germany

firstname.lastname@de.bosch.com

Abstract— Preprogramming of tasks still plays an impor-
tant role in complex robotic systems despite the advances
in automated planning and symbolic learning. Often, it is
desired that end-users implement further tasks to adapt the
robotic application to their needs. These user-defined tasks
have to meet safety and integrity constraints for protecting
the robotic platform and its users. We introduce a verifiable
task specification language (vTSL) that enables to automatically
prove that a task specification satisfies a set of predefined or
task-specific constraints. We illustrate our approach using an
example of a self-driving vehicle for intra-logistics and report
experiences with two commercial applications.

I. INTRODUCTION

Modern robotic software architectures follow a layered ap-

proach. The layer with the core algorithms for SLAM, vision-

based object recognition, motion planning, etc. is often

referred to as skill layer or functional layer. To accomplish

a complex task, these skills are orchestrated by one or more

upper layers. Typical names for these layers are planning and

executive layer, mission and task layer, or deliberation layer.

The mechanisms being used on these layers are highly

application-dependent. They range from preprogrammed

tasks (e.g., in the form of finite state-machines, behavior

trees or scripts) to automated reasoning, classical planning

and symbolic learning.

Advanced robotic applications typically use a mix of these

mechanisms and the plenty of robotic FSM editors (e.g.,

FlexBe [1] or Robot Task Commander [2]), behavior tree

frameworks (e.g., ROS behavior tree [3] and ROS deci-

sion making [4]) and robot task DSLs (e.g., b-script [5] or

TDL [6]) illustrates that preprogramming of tasks still plays

an important role. In many use-cases it is even desirable that

end-users can program (sub-)tasks according to their needs.

Example. As a running example, we consider self-driving

vehicles (SDV) for shop-floor areas. An SDV autonomously

loads, transports and unloads containers or palettes between

the machines, storages and loading ramps. Planning and

scheduling of the transport tasks (including the coarse path

to drive) is performed by a central fleet management system

for all SDVs on the shop-floor. However, the subtasks for

loading and unloading are preprogrammed and adapted to

installations such as guide rails, markers, and slideways.

Other examples for tailored, preprogrammed subtasks are

interactions with automatic doors or freight elevators.

Common goals of the aforementioned visual and textual task

languages are ease of use, flexibility, clarity and simplicity.

This implies that the task interface should hide the com-

plexity of the underlying skill layer as far as possible. In

particular for heavy and/or high-priced robotic hardware, it

should also prevent any actions that violate safety constraints

or that endanger the hardware integrity.

Of course, such constraints can and should be also checked

during runtime. Yet, to avoid expensive downtimes, user task

specifications should be verified already during the program-

ming. Therefore, we propose the verifiable Task Specification
Language (vTSL), which is designed for formal verification

by model checking with Spin [7]. vTSL is a domain-specific

language (DSL) and allows to verify a user task specification

against a set of safety and integrity constraints provided with

the robot platform as well as against task-specific constraints.

The largest potential for misuse or faulty operation of

robotic systems is not in individual parameters or inputs, but

in the interplay of the different skills, subsystems and even

with the environment. For example, two relevant constraints

from SDV applications could be: (1.) The lift of the vehicle

must not be actuated while moving. (2.) The vehicle has

to stop before turning, except for dedicated free-navigation

areas in the map. These two simple constraints already

give an idea of the complexity of such formal verification.

Therefore, vTSL also provides mechanisms to specify the

abstract behavior of the skills as well as the interplay with

the environment. In detail, our contributions are as follows:

1) vTSL – a verifiable DSL for specifying task trees for

robotic applications

2) A transformation of vTSL models into Promela models

to be verified with the Spin model checker

3) Experiments that demonstrate the viability of vTSL

and that give an indication on the scalability of the

approach.

The remainder of this paper is structured as follows. Sect. II

discusses related works. Thereafter, we present the concepts

of vTSL in Sect. III and the results of our experiments in

Sect. IV, before concluding the paper in Sect. VI.

II. RELATED WORK

Nordmann et al. survey domain specific languages (DSLs)

for robotics in [8]. In their analysis of 137 DSLs, they identi-

fied 59 DSLs that have control and handling of events on the

architecture level in focus, which clearly outweighs all other

domains such as motion control, kinematics or force control.

This supports our observation that preprogramming of task

plays an important role – even for modern applications. The

survey does not consider verifiability as a distinct property.

Published in Proc. of 2018 IEEE/RSJ Int'l Conference on Intelligent Robots and Systems (IROS), pp. 8308-8314. Madrid, Spain. October 2018.
http://dx.doi.org/10.1109/IROS.2018.8593559
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Consequently, we found only few approaches that explicitly

consider verifiable DSLs for robotics.

The only verification approach for task trees has been

proposed by Simmons et al. [9]. It supports the verification

of task activation and synchronization, but does not consider

the actual behavior of the tasks.

Armbrust et al. [10] use behavior networks for describing

the robots behavior and support their verification using model

checking. In contrast to our approach, behavior networks

define a set of conditions that define which behavior is

activated instead of using explicit control flow. During ver-

ification, only activations of behaviors are checked but not

their internal behavior.

Cowey and Taylor [11] propose a script language for defin-

ing assembly tasks for robot arms. A script can be translated

into a specification for the theorem prover Coq. Verification

in Coq [12] can only be performed semi-automatically and

requires significant expertise in theorem proving.

MissionLab [13] defines a single automaton for a mobile

robot where each state of the automaton defines either a

sensing operation or a primitive action (e.g., moving). Then,

automata of single robots are combined to verify a mission

for several robots. The verification is performed using a

process-algebra. Our language vTSL focuses on a single

robot but supports a more elaborate behavior specification.

Furthermore, there exist several approaches from the

domain of cyber-physical systems. These approaches are

mainly based on (hierarchical) state machines. Examples

include Hugo/RT [14], AADL [15], RT-DEVS [16], and

MechatronicUML[17], which even consider quantitative tim-

ing properties. However, none of these approaches supports

task trees, which we consider to be well suited for robotic

applications. In addition, we put a strong focus on readability

of vTSL models and allow for using robotic middlewares

with different communication semantics.

III. LANGUAGE CONCEPTS

In this section, we first discuss requirements and key ideas

for vTSL before we describe the basic modeling concepts

and the interfacing with the Robot Operating System (ROS).

Finally, we describe our implementation of vTSL.

A. Requirements and key ideas

Verifiability. The most important requirement of our lan-

guage is to be verifiable. To this end, verifiable means that

we can provide a fully automated transformation into a

formal verification tool that verifies whether a model being

specified in our behavior modeling language satisfies a set of

formal requirements. If a feature cannot be translated directly

and if the behavior associated with it cannot be abstracted

automatically in a meaningful way, we will not include this

feature into our language.

Task tree semantics. The language should be easy to use

for developers that have experience with the principle of

hierarchical task decomposition by task trees such as in

the Task Description Language [6] and Hierarchical Task

Networks (e.g., [18]).

Expressiveness. The language should be expressive enough

to enable the specification of real world robot behaviors with-

out too much abstraction. Therefore, we strive at including as

many features of modern programming languages as possible

without violating the requirement of being verifiable. In

detail, we strive at a textual language that shares some

resemblance with C/C++.

Synchronous programming. Synchronous programming

languages provide deterministic concurrency for reactive

systems. A new representative of these languages is Céu [19].

This textual programming languages features lightweight

constructs named par/or and par/and to spawn and join

concurrent activities – named trails – with deterministic

execution semantics. It also includes a mechanism to abort

activities from outside.

Our language shall provide similar mechanisms to call

subtasks concurrently and to abort sibling task trees. We do

not aim at the strong determinism semantics of synchronous

programming languages here, but require at a lightweight

mechanism to prevent races between concurrent subtasks on

shared data. One such mechanism is cooperative multitasking

with coroutines.

Interfacing with skill-layer components. The language

should enable to interface with skill-layer components of the

robot system that are orchestrated by the behavior model,

i.e., it should be possible to send data to components and

to retrieve data from components or to wait for events from

components. Since skill-layer components can typically not

be included into a verification procedure based on their

C++ implementation, the new behavior modeling language

should enable to provide abstract replacement models for

components, possibly via providing stubs. As a primary

robotic middleware, we strive at supporting ROS.

Source code generation. Task trees specified by the behavior

modeling language should be directly generatable into an

implementation that can be executed on the robot.

B. Task tree modeling

This section informally describes the elements of vTSL,

whose semantics is defined in form of a translational se-

mantics by the mapping to Promela described in Section IV.

The basic building block of vTSL is an action. An action

is an executable behavior that may invoke other actions and

that may be executed concurrently to other actions.

For the remainder of the paper, we use the action

FindLoadingBay shown in Figure 2 as an example to

Loading Bay

B
ox

R
obot

Ground
Camera

Fig. 1. Illustration of FindLoadingBay

Fig. 2. Example of an advanced action

illustrate the main concepts of vTSL. The implemented

behavior is illustrated in Fig. 1. The SDV has the task

to load the box that is located in the loading bay. With

FindLoadingBay, the SDV searches for a blue marker

line of the loading bay using its ground camera. More

precisely, the SDV moves orthogonal to the line (via action

MoveLinear, cf. Fig. 3) until it detects the line (via parallel

action DetectLine, cf. Fig. 4) or until it has traveled too

far (via parallel action DistanceMonitor). In the latter

case, the SDV will drive backwards and retry to detect the

blue line.

An action in vTSL is identified by the keyword action
followed by the name of the action and two parameter lists.

These are the input parameters and the return types. The

input parameters are passed to the action when it is called

and cannot be modified during execution of the action. The

optional list of return types is listed after a colon. If the list

of return types is omitted, the action has return type void.

The action body has a fixed structure: First comes a list of

variable declarations, which can be used in the entire action.

Second comes one or more behavior blocks that imple-

ment the behavior of the action. Each action has at least one

behavior. If it defines more than one behavior, each behavior

has to define a condition under which it is executable.

The condition may only refer to the input parameters of

the action. The behavior whose condition is satisfied will

be executed. In our example, the action MoveLinear in

Fig. 3 has two behaviors: one for driving forward and one

for driving backwards, where the execute condition checks

whether the desired speed is positive or negative.

Third comes a list of functions that enables to implement

private helper functions that may be called from behaviors

Fig. 3. Example of an action with multiple behaviors.

and other functions within the same action. As an example,

consider the function setGroundCameraState in Fig. 2.

The behaviors and functions contain a block with impera-

tive statements that follow the standard semantics of C/C++.

In particular, we support the regular if-statements, for-loops,

while-loops, and variable declarations. We support the basic

C expressions (arithmetic operators, logical operators, com-

parison operators, bitwise operators, shifts) and all primitive

types of C (void, boolean, char, short, int, long, float, double)

in their signed and unsigned variants including the C99 types

with explicit bit length (e.g., int8, int16).

A core feature of the DSL are subaction calls that enable

to invoke further actions from the behavior of an action.

Subaction calls may invoke an arbitrary number of subactions

at once. If more than one subaction is invoked, the call

semantics must be defined. The call-semantics is based

on Céu’s par/and and par/or semantics. For and-semantics

by call/and*, the call returns after all subactions have

returned. For or-semantics by call/or*, the call returns

after one subaction has returned. In the latter case, all other

subactions belonging to the call are aborted, but the invoking

action waits until all aborts have been executed completely.

Furthermore, an action provides a return status that indicates

Fig. 4. Example of a monitoring action waiting for an event.

whether its execution was successful, whether it failed, or

whether it was aborted. The return status can be used in

the calling action, for example to initiate retries as done in

FindLoadingBay in Fig. 2.

On a programming level, aborting an action is comparable

to an exception happening. To enable graceful shutdown of

an aborted action, we support so-called abort handlers, which

are entered if the action is aborted. They allow to bring the

underlying skill components into a consistent state (e.g., to

stop a hardware interaction).

We also support par/and and par/or statements within

behaviors as lightweight alternatives to subaction calls.

Initially, the branches are triggered from top to bottom.

par/and terminates after all branches have terminated,

while par/or terminates after one branch has terminated.

Typically, call/and* and par/and are used for start-

ing operations on skill layer components in parallel, which

all shall be finished. call/or* and par/or are often used

for starting an operation and one or more monitors, where

the execution of the operation is aborted if a monitoring

condition is satisfied.

C. Interfacing with Robotic Middleware

vTSL contains special keywords for interfacing with skill-

layer components running on a robotic middleware. In the

scope of this paper, we focus on ROS and show how to define

ROS messages, ROS topics, and ROS services. ROS mes-

sages are basically represented as C structs. The DSL ships

with all message types from std msgs and common msgs

(e.g., geometry msgs), but it also allows to define custom

message types like LineDetectMsg in Fig. 5.

Fig. 5. Example of custom ROS message type

ROS topics are supported by dedicated keywords for con-

necting to topics (connect), for writing messages to topics

(write), for reading messages from topics (read), and

for disconnecting from topics (disconnect). A typical

sequence of statements for connecting to a topic and reading

a message is given in Fig. 4 where a LineDetectMsg is

read from the lineDetect topic of the GroundCamera.

ROS services are defined based on service declarations

that follow the common ROS structure with request and

response message. vTSL provides a special keyword query
for invoking a ROS service. As usual, the values of the return

message are available in the response field of the service

object and query returns whether the service execution was

successful or not. An example is given in Fig. 2 where the

ground camera is activated by a ROS service query.

The semantics of the constructs is as follows: Reading

from a topic always causes the action that performs the

mbeddr
C Language

vTSL
Language

Core Behavior
Language

Object
Modeling Base

Classifier
Modeling

Skill Modeling
Base

Skill Modeling
ROS

Fig. 6. Implemented Languages in MPS.

read to yield, i.e., another action that is ready for execution

will be executed. If a message is present on the topic being

read, the action remains ready. If no message is present on

the topic, then the action is blocked and will only become

ready again after a message has been written on the topic.

Invoking a service is implemented with the semantics of a

remote procedure call, i.e., it blocks the entire task tree until

it returns as all actions of the task tree are executed in a

single task according to the synchronous semantics.

D. Implementation with MPS

We have implemented our vTSL in the language workbench

MPS1 using the mbeddr platform.2 MPS is based on projec-

tive editing, i.e., the editor directly displays a projection of

the underlying model making it unnecessary to implement

a parser. A particular focus of MPS is composability of

languages. We split the vTSL implementation into several

sub-languages as shown in Fig. 6.

The mbeddr C language ships with the mbeddr platform.

From this language, we use all basic C types and expressions.

We extend the C type system by objects (Object Modeling
Base) and a classifier concept (Classifier Modeling), which

shall support object-oriented features in the future, but only

defines struct types at present. The Core Behavior Language
defines the basic statements of vTSL and additional types like

strings and arrays. Based on this, we define separate language

for defining actions and components. For components, we

provide a base implementation in Skill Modeling Base and a

ROS specific extension in Skill Modeling ROS. This enables

to provide an integration of vTSL for a different robotic

middleware easily as an extension.

IV. VERIFICATION BY MODEL CHECKING

In order to establish verifiability of our DSL, we provide a

model transformation that translates a model written in vTSL

into a Promela model for the open source model checker

Spin [7]. This model includes the actions of the task tree and

a set of component stubs described next that represent the

behavior of the underlying robots skills for the verification.

A. Components stubs

A major goal of vTSL is to verify the interaction of the

actions in the task tree with the underlying components on

1https://www.jetbrains.com/mps/
2http://mbeddr.com/

Fig. 7. Structure of skill component GroundCamera

the skill layer. Therefore, we model stubs for all components

including the communication with ROS topics and services.

For each component stub, we implement the I/O behavior of

the component and an abstraction of its internal state.

A component stub always has the following fixed structure

as illustrated in Fig. 7 for GroundCamera: First comes a

list of advertised topics. These are topics that the component

reads or writes. Second comes a list of offered services.

These services may be called by actions from the task tree or

by other components. Together, advertised topics and offered

services define the interface of the component. Third comes

an initialization section. In this section, all variables

that determine the (abstraction of) the inner state of the

component are declared and initialized. Fourth and finally

comes an execute behavior section that determines the

I/O behavior of the component.

The execute behavior section typically consists of one

infinite while loop with a choose statement inside. A choose

statement represents a non-deterministic choice where in

each execution, one of the branches is chosen for execution.

However, a branch may only be chosen if it is actually

executable, whereas a branch is considered to be executable

when the first statement is executable. This semantics is in

line with the semantics of choices in Promela. For represent-

ing the I/O behavior of the component, we use one branch

for each read topic and one for each offered service.

Please note that while the task tree is implemented on a

level of detail that enables to automatically generate code

for the robot, the components are only stubs to be used

for verification. In order to verify all possible execution

traces, we use non-deterministic choices for possible results

of computations in component stubs as, for example, in

case of the line detection in Fig. 7. Also, the stubs do not

necessarily correspond with individual ROS nodes. A stub

may also represent a namespace with a group of nodes.

B. Mapping to Promela

Promela, which is the input language of the Spin model

checker [7], is a textual language that uses proctypes as

main modeling element. Proctypes have parameters and can

be instantiated to processes, each having a unique process

identifier (pid). The body of a proctype defines its behavior

and is implemented in an imperative fashion. Fig. 8 shows a

slightly simplified version of the generated Promela model to

give an impression on the structure of the generated models.

In our transformation a proctype for each action and for

each component stub in vTSL is created. The body of the

proctype contains the different behaviors of the action that

are combined using an if-statement. The transformation of

expressions and statements is straightforward as Promela has

some resemblance with C. Assertions in the DSL are trans-

lated to assertions in Promela. Functions are implemented by

using helper macros of Promela.

The synchronous semantics of action execution is con-

trolled by a set of helper variables exemplified at the top

of Fig. 8. First, runningAction contains the pid of the

currently scheduled action. Each action, which is currently

blocked, blocks on a condition that waits until its own

pid equals the runningAction. The currently reading

and blocked actions are maintained in two arrays that are

controlled by a so-called dispatcher proctype. The dispatcher

becomes active each time an action blocks. In this case,

the runningAction contains the pid of the dispatcher.

Then, the dispatcher selects the next action out of the

readyQueue and makes it the running action. The action

Fig. 8. Generated Promela Model for FindLoadingBay

that yielded is transferred into the blockedQueue.

The sample action FindLoadingBay invokes three sub-

actions. In our model transformation, we normalize such

subaction calls such that at most two subactions are contained

in a single call by introducing additional lambda actions.

Calls are implemented by a set of helper macro definitions

that we omit here. Basically, they insert the called subactions

into the readyQueue and move the calling action into

the blockedQueue. Since the subactions are called based

on par/or semantics, we have to abort all sibling actions

once one of the called subactions returns. In our Promela

model, we abort a subaction by writing its pid into the

abortSubaction array. This triggers the condition of the

unless clause at the bottom of each action, which in turn

causes the main body to be left immediately. This resembles

the intended semantics of an abort exception. In addition, the

unless clause contains the abort handler.

ROS messages are implemented by Promela typedefs that

are very similar to C struct types. Topics are implemented

based on so-called channels. A channel resembles a message

queue to which processes can write information and from

which they can read information. Thereby, messages send to

a channel may contain fields of different data types making

them a good fit for representing topics. As for ROS topics,

processes will block if they attempt to read from an empty

topic. ROS services are realized by a pair of two channels;

one for the query message and one for the response message.

The transformation from vTSL to Promela has been real-

ized using model-to-model transformation in MPS based on

our implementation described in Sect. III-D.

C. Verification with Spin

We verify the exported Promela model by loading it into

the Spin model checker. By default, Spin will verify that

the Promela model does not contain deadlocks and that all

assertions are satisfied on all possible execution traces. In

addition, Spin supports to define temporal properties for

expressing more complex constraints – either specified as

linear temporal logic (LTL) formula or as so-called never

claim. On the level of vTSL, we currently only support using

assertions, which may be placed anywhere a statement is

allowed. More complex temporal properties based on LTL

need to be specified directly in the Promela model. Such

LTL properties, however, could also be shipped along with

the robotic platform software.

In our example, the verification yields an error that results

from a violated assertion in the action MoveLinear. In

case that the SDV misses the blue marker line and retries,

it simply drives backwards with -0.2 m/s. This, however,

violates the assertion that speed is limited to -0.1 m/s for

driving backwards in MoveLinear.

V. EXPERIMENTS

This section provides information on our experiences of

applying vTSL to a logistics use case (Sec. V-A) and

discusses results from a benchmark model demonstrating the

scalability of the verification (Sec. V-B).

0 0

0 1

0 2

0 3

0

5 000

10 000

15 000

20 000

0 20 40 60 80 100

Number of Actions

#States, #Transitions Time (s)

Fig. 9. Increase in number of states and transitions as well as computing
time for increasing number of actions.

A. Experiences with use-case from logistics

Two years before vTSL, we developed a C++ library that

implements vTSL’s task tree semantics with call/and and

call/or by coroutines. The abort mechanism is implemented

by the use of C++ exceptions. The library also provides

ROS bindings, but no support for formal verification. This

library was used successfully in two commercial logistic

robot projects in the Bosch Group.

Our experiences with the corresponding C++-based task

trees significantly influenced the concept and design of

vTSL. We re-implemented relevant parts of the task trees

in vTSL and conducted various experiments with them. For

example, using the Spin-based verification, we identified

timing problems between activations in the skill components

caused by concurrent actions in the task trees.

The developers of the aforementioned logistic robot

projects confirmed the improved readability – as to be

expected from a DSL. vTSL reduced the code size by

more than 50% compared to the C++-based task trees. Our

colleagues particularly appreciated the concise syntax for

lightweight concurrency by par/and and par/or and the

syntax for abort handling, which are implemented by lambda

expressions (i.e. [&](){...}) and try-catch in C++.

B. Performance evaluation of verification

For better estimating the viability of model checking of

vTSL specifications, we created a benchmark model in

which we can modify the number of actions, the number of

variables and statements per action, as well as the number

of components. We evaluated this model using Spin v6.4.5

on an HP laptop with Intel Core i5 processor.

First, we analyze the effect of an increasing number of

actions on the size of the resulting state space in Spin,

which is given by the number of states and transitions. In

the experiment, we use 50 statements and 10 variables for

each action and increase the number of actions from 1 to

100. Each action invokes two subactions using call/and*
until the intended number of actions has been launched.

The results in Fig. 9 show that the increase is linear in the

number of actions (left y-axis, blue) and computing time

(right y-axis, green) as we expect due to the synchronous

semantics of vTSL. Since the number of states and transitions

0 01

0 1

1

10

100

1 000

10 000

100 000

1 000 000

10 000 000

0 1 2 3 4 5

Number of Components

#States #Transitions Time (s)

Fig. 10. Increase in number of states and transitions as well as computing
time for increasing number of components.

is coincidentally equal in our experiment, we plotted only a

single line for states and transitions.

Second, we analyze the effect of an increasing number of

components on the size of the state space in Spin. In the

experiment, we use ten actions with ten statements and ten

variables in each action. Each action invokes two subactions

using call/and* until the intended number of actions has

been launched. The first n leaf actions connect to a topic

of a component, wait for a message, and terminate. The

results shown in Fig. 10 show that the increase in states and

transitions (left y-axis, blue) is exponential in the number

of components as we expect due to the fact that components

run concurrently to the task tree. The plot also shows that the

computing time (right y-axis, green) depends nearly linearly

on the number of transitions. The memory consumption is

roughly about 300 byte per transition in this experiment,

which gives 1.15GB for the run with five components.

VI. CONCLUSIONS

We presented a DSL, called vTSL, for task trees that allows

to verify the specified behaviors against predefined and task-

specific constraints of the robot platform using an automated

translation to the Spin model-checker. We explained the

major concepts of the language, including the mechanisms

for concurrency between tasks, for concurrency within tasks

and for the abort of subtasks in particular. We showed the

scalability in two experiments and reported experiences from

commercial use-cases.

Currently, we work on a code generation from vTSL to

C++, using the C++ task library mentioned in Sec. V-A.

Furthermore, we are working an exception mechanism that

allows to escalate exceptions along the task hierarchy. While

vTSL currently only supports simple assertions, we need to

integrate support for LTL properties and evaluate their impact

on the verification time.

Advanced features planned for the next years are support

of unbounded container types and verification with timed

model checking. While the former can be often circumvented

in practice, the latter is essential for continuous processes,

which are prevalent in robotics. We also consider to publish

vTSL as open-source software – in particular together with

potential academic partners conducting research in the last

mentioned domains.

REFERENCES

[1] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-Robot Col-
laborative High-Level Control with Application to Rescue Robotics,”
in Proc. of the IEEE Int’l Conference on Robotics and Automation
(ICRA ’16), Stockholm, Sweden, May 2016, pp. 2796–2802.

[2] S. Hart, P. Dinh, J. D. Yamokoski, B. Wightman, and N. Radford,
“Robot Task Commander: A Framework and IDE for Robot Applica-
tion Development,” in Proc. of the 2014 IEEE/RSJ Int’l Conference
on Intelligent Robots and Systems (IROS ’14), Chicago, Il, USA, Sept.
2014.

[3] M. Colledanchise and P. Ögren, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and Decision Trees,” IEEE
Transactions on Robotics, vol. 33, no. 2, pp. 372–389, Apr. 2017.

[4] CogniTeam Ltd., “ROS decision making,” 2015, retrieved February
27, 2018, from http://wiki.ros.org/decision making.

[5] T. J. de Haas, T. Laue, and T. Röfer, “A Scripting-based Approach to
Robot Behavior Engineering Using Hierarchical Generators,” in Proc.
of the IEEE Int’l Conference on Robotics and Automation (ICRA ’12),
St. Paul, MN, USA, May 2012, pp. 4736–4741.

[6] R. Simmons and D. Apfelbaum, “A Task Description Language for
Robot Control,” in Proc. of the 1998 IEEE/RSJ Int’l Conference on
Intelligent Robots and Systems (IROS ’98), vol. 3, Victoria, B.C.,
Canada, Oct. 1998, pp. 1931–1937.

[7] G. J. Holzmann, The Spin Model Checker – Primer and Reference
Manual. Addison Wesley, 2004.

[8] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A
Survey on Domain-Specific Modeling and Languages in Robotics,”
Journal of Software Engineering for Robotics (JOSER), no. 7, 2016.

[9] R. Simmons, C. Pecheur, and G. Srinivasan, “Towards automatic
verification of autonomous systems,” in Proc. of the IEEE/RSJ Int’l
Conference on Intelligent Robots and Systems (IROS 2000), vol. 2,
Oct. 2000, pp. 1410–1415.

[10] C. Armbrust, L. Kiekbusch, T. Ropertz, and K. Berns, “Tool-assisted
Verification of Behaviour Networks,” in Proc. of the IEEE Int’l
Conference on Robotics and Automation (ICRA ’13), May 2013, pp.
1813–1820.

[11] A. Cowley and C. J. Taylor, “Towards language-based verification
of robot behaviors,” in Proc. of the IEEE/RSJ Int’l Conference on
Intelligent Robots and Systems (IROS ’11), Sept. 2011, pp. 4776–4782.

[12] A. Chlipala, Certified Programming with Dependent Types – A Prag-
matic Introduction to the Coq Proof Assistant. MIT Press, 2013.

[13] D. Lyons, R. Arkin, S. Jiang, D. Harrington, and T. Liu, “Verifying
and validating multirobot missions,” in Proc. of the IEEE/RSJ Int’l
Conference on Intelligent Robots and Systems (IROS ’14), Sept. 2014,
pp. 1495–1502.

[14] A. Knapp, S. Merz, and C. Rauh, “Model Checking – Timed UML
State Machines and Collaborations,” in Formal Techniques in Real-
Time and Fault-Tolerant Systems, ser. Lecture Notes in Computer Sci-
ence, W. Damm and E.-R. Olderog, Eds. Springer Berlin Heidelberg,
Sept. 2002, vol. 2469, pp. 395–416.

[15] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated
Verification of AADL-Specifications Using UPPAAL,” in Proc. of the
14th IEEE Int’l Symposium on High-Assurance Systems Engineering,
Oct. 2012, pp. 130–138.

[16] A. Furfaro and L. Nigro, “Embedded Control Systems Design based on
RT-DEVS and temporal analysis using UPPAAL,” in Proc. of the Int’l
Multiconference on Computer Science and Information Technology
(IMCSIT ’08), Oct. 2008, pp. 601–608.

[17] C. Gerking, S. Dziwok, C. Heinzemann, and W. Schäfer, “Domain-
specific Model Checking for Cyber-physical Systems,” in Proc. of
the 12th Workshop on Model-Driven Engineering, Verification and
Validation (MoDeVVa ’15), Ottawa, Sept. 2015, pp. 18–27.

[18] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN Planning System,” Journal of Artificial
Intelligence Research, vol. 20, no. 1, pp. 379–404, Dec. 2003.

[19] F. Sant’Anna, “Structured Synchronous Reactive Programming with
Céu,” in Proc. of the 14th Int’l Conference on Modularity (MODU-
LARITY ’15), Fort Collins, CO, USA, Mar. 2015, pp. 29–40.

